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1. Introduction 

The human hand is one of the most intricate and functionally significant anatomical structures, 
enabling complex movements essential for daily living, work, and social interactions. The hand 
consists of 27 bones, numerous muscles, tendons, ligaments, and an extensive network of sensory and 
motor neurons that allow for precise control of grip strength, dexterity, and tactile feedback [1]. Its 
functionality extends beyond simple grasping and manipulation; it plays a pivotal role in 
communication, particularly in sign language and non-verbal cues. Given its crucial role, any disorder 
or injury affecting the hand necessitates effective rehabilitation to restore function and improve overall 
well-being. Hand dysfunction can result from various conditions, including traumatic injuries, 
musculoskeletal disorders, and neurological impairments. Common conditions requiring rehabilitation 
include stroke. arthritis, carpal tunnel syndrome, Dupuytren’s contracture, and peripheral nerve injuries 
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 The human hand is a complex and functionally significant anatomical 
structure, playing a critical role in daily activities, communication, and 
professional tasks. Any impairment due to injury, neurological 
disorders, or musculoskeletal diseases can severely affect an individual's 
quality of life. Conditions such as stroke-induced hemiparesis, arthritis, 
carpal tunnel syndrome, and tendon injuries often necessitate 
rehabilitation to restore function, minimize pain, and prevent secondary 
complications. Traditional rehabilitation approaches, while beneficial, 
generally follow a standardized methodology, failing to account for 
individual variations in muscle strength, neuroplasticity, and adaptive 
capacity.Modern rehabilitation methods leverage advanced technologies 
such as electromyography (EMG) and hand grip force measurement to 
enhance therapy effectiveness. Additionally, artificial intelligence (AI) 
applications, particularly Long Short-Term Memory (LSTM) networks 
and Transformer models, have emerged as promising tools for 
personalized rehabilitation. These models analyze EMG signals to 
predict hand movement intentions, enabling adaptive rehabilitation 
strategies tailored to individual needs. This study focuses on the 
construction of a real-time EMG signal acquisition system and uses 
them as input to LSTM and Transformer models to compare and 
analyze the performance of the two types of models. By demonstrating 
the superiority of applying AI for personalization over the general AI 
approach, this study highlights the potential of AI in hand rehabilitation 
in particular and healthcare in general with its ability to specialize for 
each individual patient..  

 

This is an open access article under the CC–BY-SA license.    

 

 
Keywords 

Grip Force  

EMG 

Rehabilitation 

Machine Learning 

 

 

http://dx.doi.org/10.29099/ijair.v9i1.1381
http://ijair./
mailto:jurnal.ijair@gmail.com
http://creativecommons.org/licenses/by-sa/4.0/


  International Journal of Artificial Intelegence Research ISSN 2579-7298 

 Vol. 9, No. 1, June 2025 

 

 Tien Manh Nguyen et.al (Research on the Application of Artificial Intelligence in Hand Rehabilitation) 

[2]. Rehabilitation plays a critical role in restoring function, minimizing pain, and preventing secondary 
complications following injury or disease. The primary goals of rehabilitation include improving 
muscle strength, restoring joint mobility, enhancing coordination, and promoting neuroplasticity for 
functional recovery [3]. Here is a list of some typical cases of hand dysfunction that require hand 
rehabilitation: 

• Stroke-Induced Hemiparesis: Stroke is a leading cause of disability worldwide, frequently resulting 
in hemiparesis or hemiplegia, which impairs hand function on one side of the body [4]. Post-stroke 
rehabilitation aims to restore motor control and hand dexterity. 

• Arthritis and Degenerative Disorders: Osteoarthritis and rheumatoid arthritis lead to joint stiffness, 
pain, and progressive loss of movement in the hand, requiring rehabilitation to maintain mobility 
and reduce discomfort [5]. 

• Carpal Tunnel Syndrome (CTS): CTS results from median nerve compression, leading to 
numbness, weakness, and pain. Conservative and post-surgical rehabilitation strategies focus on 
restoring grip strength and reducing symptoms [6]. 

• Hand Trauma and Tendon Injuries: Fractures, lacerations, and tendon injuries significantly impact 
grip force and dexterity. Rehabilitation for such injuries includes exercises to restore strength and 
flexibility [7]. 

Rehabilitation is particularly crucial for individuals recovering from stroke, neurological disorders, 
or musculoskeletal injuries, where loss of fine motor skills can severely impact independence. 
Research suggests that early and intensive rehabilitation leads to better functional outcomes by 
stimulating neural pathways and preventing muscle atrophy [8]. 

Modern rehabilitation approaches incorporate electromyography (EMG) and hand grip force 
measurement to monitor and enhance the effectiveness of exercises. EMG measures muscle electrical 
activity, providing real-time feedback for neuromuscular training, while grip force measurement 
assesses strength levels and functional improvements. EMG biofeedback has been used in stroke and 
neuromuscular rehabilitation to improve voluntary muscle activation. EMG-driven robotic 
exoskeletons help restore hand movement by assisting weakened muscles [9]. Devices measuring grip 
force are commonly used in rehabilitation for conditions like stroke and arthritis. They help track 
improvements in hand strength and allow personalized training programs tailored to the patient's needs 
[10]. Studies have demonstrated that EMG-controlled robotic gloves and exoskeletons significantly 
improve hand function in stroke survivors by promoting repetitive task practice and neuroplasticity 
[11]. 

Traditional hand rehabilitation programs often follow a standardized approach, applying the same 
therapy protocols to a broad patient population. While effective for general recovery, this method fails 
to address individual differences in muscle strength, neuroplasticity, and adaptive capacity [12]. 
Personalized rehabilitation, in contrast, considers each patient’s specific impairments, progress rate, 
and adaptive responses. Several studies emphasize the drawbacks of generalized rehabilitation, 
highlighting the importance of tailoring therapy to an individual’s specific deficits. Personalized 
rehabilitation can optimize treatment outcomes by adjusting intensity, duration, and type of exercises 
based on real-time feedback from EMG and grip force sensors [13]. 

Artificial intelligence (AI) has gained significant attention in rehabilitation due to its potential to 
provide adaptive and personalized therapy. Machine learning models, such as Long Short-Term 
Memory (LSTM) and Transformer architectures, are being increasingly utilized for movement 
prediction, rehabilitation monitoring, and biofeedback analysis. LSTM networks, a type of recurrent 
neural network (RNN), have been used to analyze EMG signals for predicting hand movement 
intentions in individuals with neuromuscular impairments. These models enhance prosthetic and 
exoskeleton control, providing more natural hand movements [15]. Transformers, known for their 
efficiency in processing sequential data, have been applied in motion prediction and rehabilitation 
robotics. By analyzing grip force patterns and muscle activity, Transformer-based models can optimize 
therapy by adjusting rehabilitation exercises dynamically [16]. Recent advancements in AI- driven 
rehabilitation suggest that combining EMG biofeedback with machine learning models can lead to 
more effective and adaptive therapies, improving patient outcomes [17]. There have been several 
studies using AI to predict hand grip force, such as in the study by Hongxin Cao, which used extreme 
learning machine (ELM), support vector machine (SVM), and multiple nonlinear regression (MNLR) 
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with the input of EMG signals to predict hand grip force with a maximum accuracy of up to 80.6% 
[18]. Pan Xu's study used electrical impedance myography (EIM) applying a weak alternating current 
signal of known frequency to obtain muscle impedance parameters, combined with LSTM to predict 
hand grip force with a maximum accuracy of up to 90.23% [19]. Betzalel Fialkoff's study used the 
Logarithmic Transformer with an input of 8 EMG signals to predict handgrip force with a maximum 
accuracy of up to 97% [20]. Chang Liu's research developed a flexible EMG sensor for muscle strength 
assessment and rehabilitation training, through extracting EMG features according to different muscle 
strengths, the project realized the research of muscle strength feedback through EMG, using LSTM 
model and back propagation network (BP- ANN) with a maximum accuracy of 98.81% [21]. As of this 
study, Chang Liu's research shows the state-of-art of using AI to estimate handgrip force with EMG as 
input data. 

The hand is an essential organ for human functionality, and its impairment due to disease or injury 
necessitates effective rehabilitation strategies. Traditional rehabilitation approaches, while beneficial, 
often lack personalization, highlighting the need for individualized therapy. EMG and grip force- based 
methods have improved rehabilitation effectiveness, and AI applications, such as LSTM and 
Transformer models, offer promising advancements for adaptive rehabilitation. Our research focuses 
on applying AI in rehabilitation to further personalized hand therapy, ultimately enhancing patient 
recovery and quality of life. 

The works and contributions of our papers are summarized as follows: 

• Fabricate a system to capture EMG signals from the hand at 200Hz frequency continuously in real 
time. Design LSTM and Transformer models specifically for that EMG input data. 

• Performance comparison between LSTM Model and Transformer Model when input is continuous 
EMG data over time. 

• Comparing the accuracy between applying personalized AI to a specific person with AI generalized 
to a group of people. Confirming the vast potential of AI personalization in Rehabilitation 

2. Method  

2.1 Collecting EMG data 
Based on the anatomical study of the flexor digitorum superficialis (FDS) muscle, the electrode 

placement positions were precisely determined. One electrode is placed at the innervation zone [22] of 
the FDS muscle, identified in this case as the area near the wrist. Another electrode is positioned on the 
muscle belly. Both locations are considered optimal for obtaining high-quality EMG signals 

[23] which are labeled as green and red, respectively. To obtain clear signals, a yellow reference 
electrode was placed at a low potential position on the elbow. The electrode placement positions are 
illustrated on Fig.1. 

Ten subjects were instructed to perform gradually increasing and decreasing grip force levels at 
evenly spaced time intervals. The force levels were chosen to be sufficiently different so that the 
measurement tool's error would not significantly impact the results. Additionally, the required grip 
force was not too high to avoid discomfort for the participants. After careful consideration of these 
conditions, the study employed grip force levels of 3, 6, 9, and 12 kg. Each grip force level was 
maintained for 10 seconds, with a rest period (muscle relaxation) of 10 seconds between grips. The 
gripping and releasing process was performed continuously during a single EMG signal measurement 
to ensure the continuity and accuracy of the collected data. 
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Fig. 1. EMG data collection process 

2.2 Encoding EMG data 

Encoding a single EMG signal for hand grip force estimation involves preprocessing raw signals 
into a structured format suitable for machine learning models. The EMG data, collected at different 
force levels (0Kg, 3Kg, 6Kg, 9Kg, 12Kg), is segmented into time windows with 50 EMG values per 
window, since the sampling frequency is 200Hz, one window corresponds to 0.25 seconds. This 
structured encoding enables accurate force estimation by capturing the relationship between EMG 
signal variations and corresponding grip force intensities. The EMG data of multiple individuals 
were pooled into one group and the EMG data of each individual was encoded corresponding to the 
hand grip force as shown in Fig.2. 

Fig. 2. EMG data set of multiple people (left) and Encoding EMG from a single object (right) 

2.3 LSTM Model and Transformer Model for One EMG Signal Input 

The LSTM Model is a powerful deep learning architecture designed to capture temporal 
dependencies in sequential data, making it well-suited for processing EMG signals. When estimating 
hand grip force, LSTMs could effectively learn patterns from multi-channel EMG inputs, preserving 
long-term dependencies while mitigating vanishing gradient issues. By leveraging recurrent 
connections and memory cells, the model refines its predictions, enhancing real-time grip force 
estimation for prosthetic control or rehabilitation applications. However, since the input is only from 
one single EMG signal, the model will not have any Normalization or Convolution layers to minimize 
the possibility of noise in the input data. The structure of the LSTM Model in this study is shown 
through the characteristics shown in Fig.3 and Table 1. 
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Fig. 3. Architecture of LSTM Model (left) and Transformer Model (right) 

The Transformer Model, known for its self-attention mechanism, has shown great potential in 
processing EMG signals for hand grip force estimation. Unlike recurrent models, Transformers capture 
long-range dependencies efficiently by attending to all time steps simultaneously, improving feature 
extraction from complex muscle activation patterns. This architecture enables precise grip force 
estimation by learning intricate spatial-temporal relationships in EMG data. Its parallel processing 
capability enhances computational efficiency, making it suitable for real-time applications in 
prosthetics and rehabilitation. Similar to LSTM Model, with input data from only one single EMG 
signal, Transformer Model will not have any Normalization layer (a layer often present in segments of 
a standard Transformer) to minimize the possibility of noise for input data. The structure of the 
Transformer Model in the study is shown in Fig.3 and Table 1. 

Table 1.  Specifications of Training Models 

 

Specifications LSTM Model Transformer Model 

Optimizer Adam Adam 

Loss Categorical Cross Entropy Categorical Cross Entropy 

Metrics Categorical Accuracy Categorical Accuracy 

Epochs 200 200 

Drop Out 0.1 0.4 

Total Parameter 30789 22581 

3. Results and Discussion 

Our research results show promising results when using LSTM and Transformer models with EMG 
data of an individual or multiple individuals as input to estimate Hand Grip Force for Hand 
Rehabilitation. We observed the models' ability to estimate Hand Grip Force for a single subject or a 
group of people, assessing the strengths and limitations of each model and different inputs. The overall 
F1-score accuracy for an individual of each model and input are shown in Table 2., and detailed 
information of other metrics such as Loss, Validation and Confusion Matrix are shown in the sections 
below. 

Table 2.  F1-Socre Accuracy of all Models and Inputs 

  F1 – Score  

Indicators LSTM- 
Individual 

LSTM-Multi Person Transformer- Individual Transformer-Multi person 

Micro average 1.00 0.92 0.75 0.80 

  F1 – Score  

Indicators LSTM- 
Individual 

LSTM-Multi Person Transformer- Individual Transformer-Multi person 
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Macro average 0.99 0.85 0.45 0.60 

Weighted average 
0.99 0.92 0.72 0.79 

Samples average 0.99 0.92 0.75 0.80 

. 

3.1. LSTM Model 

Training results of the LSTM Model using individual data and multi person data through the Loss 
graphs are indicated in Fig.4 and Accuracy graphs in Fig.5. The evaluation results, the Confusion 
Matrix of using LSTM Model to estimate Hand Grip Force for a single subject and a group of people 

are shown in Fig.6 and Fig.7. 

Fig. 4. Plot of the training and validation loss using individual data (left) and multi person data (right) 

 

In Fig.4, both the individual data and multi person data inputs of LSTM Model have a decreasing 
training loss and a decreasing validation loss, eventually stabilizing at a low value, which means that 
both inputs of LSTM Model are Good Fits, but the right graph stabilizes faster. In the last epoch, the 
training loss value from individual data is 0.0288 and that of multi person data is 0.1350, the validation 
loss value from individual data is 0.0226 and that from multi person data is 0.1371. 

Fig. 5. Plot of the training and validation accuracy using individual data (left) and multi person data (right) 

In Fig.5, both the individual data and multi person data inputs of LSTM Model have an increasing 
training accuracy and an increasing validation accuracy that eventually stabilizes at a high value, it 
means both inputs of LSTM Model are Good Fits, but the right graph stabilizes faster. In the last 
epoch, the training accuracy value from individual data is 0.9925 and from multi person data is 0.9388, 
the validation accuracy value from individual data is 0.9905 and from multi person data is 0.9408 
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Fig. 6. Confusion matrix of estimating a single subject hand grip force using individual data (left) and multi 

person data (right) 

Fig.6 shows that both the individual and multi person input data of the LSTM Model recognize the 
resting state - 0Kg very well, the grip force estimation from the individual data is very good while that 
from the multi person data is relatively good. The right confusion matrix shows that the grip force 
estimation has a part that predicts higher force than the actual force, this is because the EMG value of 
this individual is higher than the average. The details of the accuracy index of all 5 grip force markers 
and the averages of the individual and multi person input data of the LSTM Model are shown in Table 
3. 

 

Fig. 7. Confusion matrix of estimating a group of people hand grip force using individual data (left) and multi 

person data (right) 

Fig.7 shows that both individual and multi person data input of the LSTM Model recognize the 
resting state - 0Kg very well, the grip force estimation from the individual data is slightly inaccurate 
while that from the multi person data is relatively good. The left confusion matrix shows that the grip 
force estimate has a fair amount of predicted force that is higher than the actual force, this is because 
this individual's EMG value is higher than the average value. The accuracy of left confusion matrix is 
83% and that of right confusion matrix is 94%. 

Using individual EMG data as input to LSTM Model to estimate a single subject's handgrip force 
gives better results than using multiple person EMG data. Using multiple person EMG data as input to 
LSTM Model to estimate a group of people’s hand grip force gives better results than using individual 
EMG data. The F1-score of LSTM Model in this study has the highest value of 99.99%, higher than the 
score of other AI models and state-of-art model mentioned in the study: Hongxin Cao Model – 80.6% [ 
18], Pan Xu's Model – 90.23% [19], Betzalel Fialkoff's Model - 97% [20], Chang Liu's Model – 
98.81% [21]. 

Table 3.  Accuracy of LSTM Model estimating a single subject hand grip force 

Indicator  Individual  Multi person 

Precision Recall F1-score Precision Recall F1-score 

0Kg 1.00 1.00 1.00 1.00 0.99 0.99 

3Kg 0.99 0.99 0.99 0.90 0.82 0.86 
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6Kg 0.99 0.99 0.99 0.85 0.76 0.80 

9Kg 0.98 1.00 0.99 0.73 0.69 0.71 

12Kg 1.00 0.98 0.99 0.76 1.00 0.86 

Micro average 1.00 1.00 1.00 0.92 0.92 0.92 

Macro average 0.99 0.99 0.99 0.85 0.85 0.85 

Weighted average 1.00 1.00 1.00 0.92 0.92 0.92 

Samples average 1.00 1.00 1.00 0.92 0.92 0.92 

 

3.2. Transformer Model 
Training results of the Transformer Model using individual data and multi person data through the 

Loss graphs are indicated in Fig.8 and Accuracy graphs in Fig.9. The evaluation results, the Confusion 
Matrix of using Transformer Model to estimate Hand Grip Force for a single subject and a group of 
people are shown in Fig.10 and Fig.11. 

 

Fig. 8. Plot of the training and validation loss using individual data (left) and multi person data (right) 

In Fig.8, both the individual data and multi person data inputs of Transformer Model have a 
decreasing training loss and a decreasing validation loss, eventually stabilizing at a low value, which 
means that both inputs of Transformer Model are Good Fits, but the right graph stabilizes faster. In the 
last epoch, the training loss value from individual data is 0.5206 and that of multi person data is 
0.3609, the validation loss value from individual data is 0.4827 and that from multi person data is 
0.3625. 

 

Fig. 9. Plot of the training and validation accuracy using individual data (left) and multi person data (right) 

In Fig.9, both the individual data and multi person data inputs of Transformer Model have an 
increasing training accuracy and an increasing validation accuracy that eventually end at a high value, 
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it means both inputs of Transformer Model are Good Fits. In the last epoch, the training accuracy 
value from individual data is 0.7600 and from multi person data is 0.8360, the validation accuracy 
value from individual data is 0.7528 and from multi person data is 0.8405. 

Fig. 10. Confusion matrix of estimating a single subject hand grip force using individual data (left) and multi 

person data (right) 

 

Fig.10 shows that both the individual and multi-person input data of the Transformer Model 
recognize the resting state - 0Kg very well, the grip force estimation from the individual data is 
severely inaccurate while that from the multi-person data is relatively inaccurate. Both confusion 
matrices have misclassification with adjacent handgrip force values, the right confusion matrix has 
higher accuracy. The details of the accuracy index of all 5 grip force markers and the averages of the 
individual and multi person input data of the Transformer Model are shown in Table 4. 

 

Fig. 11. Confusion matrix of estimating a group of people hand grip force using individual data (left) and multi 

person data (right) 

Fig.11 shows that both the individual and multi-person input data of the Transformer Model 
recognize the resting state - 0Kg very well, the grip force estimation from the individual data is 
severely inaccurate while that from the multi-person data is relatively inaccurate. Both confusion 
matrices have misclassification with adjacent handgrip force values, the right confusion matrix has 
higher accuracy. The accuracy of left confusion matrix is 76% and that of right confusion matrix is 
84%. 

Using multiple person EMG data as input to Transformer Model gives better results than using 
individual EMG data in estimating both single object and a group of people hand grip force. 

Table 4.  Accuracy of Transformer estimating a single subject hand grip force 

Indicator 
 Individual  Multi person 

Precision Recall F1-
score 

Precision Recall F1-
score 

3Kg 0.84 0.20 0.32 0.76 0.59 0.66 

6Kg 0.35 0.34 0.34 0.36 0.19 0.25 

9Kg 0.18 0.02 0.04 0.30 0.38 0.33 

12Kg 0.38 1.00 0.55 0.60 1.00 0.75 

Micro 

average 

0.75 0.75 0.75 0.80 0.80 0.80 

Macro 

average 

0.55 0.51 0.45 0.60 0.63 0.60 

Weighted 

average 

0.77 0.75 0.72 0.80 0.80 0.79 

Samples 

average 

0.75 0.75 0.75 0.80 0.80 0.80 
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4. Conclusion 

LSTM Model performed significantly better than the Transformer Model in this study, specifically 
LSTM Model had an accuracy of nearly 100% in estimating the grip force of single subject and 94% 
of a group of people compared to 80% for a single subject and 84% for a group of people of 
Transformer Model. Transformer Model gives much better results with input data of EMG of many 
people than EMG of a single subject. From the above, we can draw the following conclusions: 

• When the input is just one EMG signal, with such low input dimensionality, using LSTM Model is 
more optimal than using Transformer Model. 

• With low input dimensionality, the Transformer Model with more diverse input data gives better 
results whether it is to estimate the grip force of a single subject or a group of people. 

• This study took approximately 1 to 2 hours from EMG data collection to training the Model to 
estimate grip force. Combined with the accuracy of nearly 100% when applied to a single subject, 
significantly higher than 94% for a group of people, the Application of Artificial Intelligence in 
Rehabilitation should focus on developing support for a single specific subject instead of a 
group of people like other traditional methods. 

To continue to develop further into AI research for Hand Rehabilitation, there are 
recommendations below: 

• Increasing the input number of EMG signals instead of just one EMG signal as in this study to be 
able to recognize more complex states of the human hand, which should be the strength of 
Transformer Model with its ability to receive diverse inputs for complex outputs. 

• Grip force is one of the most basic states of hand activity, future studies will combine the 
recognition of other complex hand activities together with grip force, by using a multi-label 
classification model instead of multiclass classification for only hand grip force as in this study. 
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