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1. Introduction  

High-dimensional data analysis poses inherent challenges in statistical modeling due to the 
complexity of inter-variable relationships and the heightened risk of overfitting, particularly in 
classification models. In classification analysis, logistic regression is one of the most commonly 
employed statistical methods, as it offers high interpretability and facilitates the assessment of each 
predictor variable’s influence on the response variable [1]. Nevertheless, logistic regression has 
inherent limitations in capturing non-linear patterns and complex inter-variable interactions. 
Additionally, issues such as multicollinearity and data imbalance can adversely impact model 
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 Classification analysis in high-dimensional data presents significant 

challenges, particularly due to the presence of complex non-linear 

patterns that traditional methods, such as logistic regression, fail to 

capture effectively. This limitation is often reflected in relatively low 

model accuracy. One approach to addressing this issue is through 

machine learning-based classification methods, such as Random Forest 

and Support Vector Machine (SVM). While these models generally 

achieve higher accuracy than logistic regression, their black-box nature 

limits interpretability, making it difficult to explain their classification 

decisions. As machine learning models continue to advance, 

interpretability has become a crucial concern, especially in data-driven 

decision-making. Post-hoc explainable artificial intelligence (XAI) 

techniques offer a viable solution to enhance model transparency. This 

study applies SHAP to machine learning models to gain insights into 

the underdevelopment status of regencies in Indonesia. The results 

indicate that SVM outperforms both logistic regression and Random 

Forest. SHAP values estimated from SVM, using various permuted 

variable subsets, exhibit stability. Clustering analysis identifies five 

optimal clusters of underdeveloped regencies. Based on average SHAP 

values, underdevelopment alleviation strategies should focus on social 

factors (Cluster 1), infrastructure (Cluster 2), accessibility (Cluster 3), 

and a combination of infrastructure, accessibility, education, and 

healthcare (Cluster 4), while Cluster 5 requires improvements in 

accessibility and economic conditions.  
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performance, particularly in terms of accuracy [2, 3]. Compared to logistic regression, machine 
learning models such as Random Forest and Support Vector Machine (SVM) are better equipped to 
capture complex data patterns and enhance predictive accuracy [4, 5]. Despite their ability to achieve 
high predictive accuracy, machine learning models do not provide insights into their decision-making 
process, classifying them as black-box models [6]. 

Complex predictive models can generate highly accurate predictions; however, they often remain 
difficult for policymakers to interpret. As machine learning models continue to evolve, the challenge 
of interpretability has become an increasingly critical concern, particularly in data-driven decision-
making. Model interpretability is essential to ensure that decisions derived from these models are 
reliable and grounded in a solid foundation. Therefore, there is a growing need for approaches that not 
only deliver high accuracy but also provide clear justifications for each prediction. Consequently, the 
demand for Explainable Artificial Intelligence (XAI) has emerged as a means to enhance trust in 
machine learning models. Ali, et al. [7] explained the types of explainability in XAI, namely: (i) data 
explainability, (ii) model explainability, (iii) post-hoc explainability, and (iv) assessment of 
explanations. Data explainability focuses on the transparency of data sources, data quality, and how 
data is processed before being used in a model. This ensures that the data utilized is representative of 
the problem being addressed. Model explainability involves understanding the model’s structure, 
parameters, and decision-making processes. Post-hoc explainability emphasizes explanations 
provided after the model generates predictions or decisions, whereas assessment of explanations 
highlights the role of expert knowledge in evaluating explanations to ensure their accuracy and 
practical utility. 

The post-hoc explainability approach plays a crucial role in enhancing the understanding and 
trustworthiness of AI models, particularly in the context of complex and inherently opaque machine 
learning models. Post-hoc methods are often model-agnostic, meaning they can be applied to various 
machine learning models, ranging from simple to highly complex, without requiring modifications to 
the original model structure. This enables users to obtain explanations for existing models in a more 
accessible manner without the need to reconstruct them. Shapley Additive Explanations (SHAP) is a 
model-agnostic post-hoc explainability method based on game theory. It quantifies the contribution 
of each predictor to the model’s predictions at both global and local levels, providing a comprehensive 
understanding of feature importance in machine learning models [8]. In local interpretation, SHAP 
assigns values to each observation, enabling users to understand the rationale behind a prediction by 
quantifying the contribution of each predictor [9]. In global interpretation, the aggregation of SHAP 
values reveals the extent to which each predictor contributes to the response variable, either positively 
or negatively. This approach is similar to a variable importance plot but provides additional insights 
by indicating whether each predictor has a positive or negative relationship with the response variable. 
[7].  

This technique serves as an essential tool in machine learning analysis, particularly in interpreting 
the impact of predictor variables on classification probabilities in high-dimensional data. By providing 
clearer interpretations, analytical results become more easily communicable to stakeholders and can 
be leveraged for more targeted policy decision-making. As an application of this approach, this study 
employs SHAP to analyze the variables contributing to regency underdevelopment in Indonesia. 
Addressing underdeveloped regions is a critical issue in national development planning, and data-
driven analysis can offer deeper insights for policymakers. The dataset used in this study is highly 
multidimensional, consisting of 22 predictor variables and 415 observations. Logistic regression is 
employed as the baseline model for binary classification due to its simplicity and interpretability. To 
capture the non-linear relationships between predictor variables and the response variable, this study 
incorporates machine learning models, specifically Random Forest and Support Vector Machine 
(SVM), to enhance predictive accuracy. 

By leveraging SHAP, this study not only emphasizes model accuracy but also ensures that the 
results are interpretable and practically applicable in decision-making processes. Furthermore, the 
determinants of regency underdevelopment may vary across regions depending on their specific 
conditions. Research related to underdeveloped regencies in Indonesia has been conducted by Oktora 
[10], which examined the determinants of regency underdevelopment status through a non-parametric 
approach, specifically Multivariate Adaptive Regression Splines (MARS). Purwandari and Hidayat 
[11] employed discriminant analysis as a parametric approach to identify the determinants of 
underdeveloped regencies. Otok, et al. [12] applied machine learning techniques, particularly the 
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decision tree algorithm, to classify underdeveloped regions. Maulidina and Oktora [13] investigated 
the variables influencing underdeveloped regencies, with a specific focus on Eastern Indonesia, using 
a spatial approach. Lewenussa and Rawi [14] conducted a classification of underdeveloped regions, 
concentrating exclusively on one province, West Papua Province. Suyanto [15] constructed clusters 
of underdeveloped regions in general based on regional characteristics. While these studies have 
identified variables influencing underdevelopment in regencies broadly (applicable to all regencies), 
they have not specifically pinpointed the key determinants of underdevelopment at the instance level 
(for each regency). Such identification is critical for formulating policies that can be directly targeted 
to each underdeveloped regency. The local interpretations generated by SHAP—highlighting the most 
influential predictor variables for each regency's underdevelopment status—are highly valuable for 
policy formulation, allowing targeted interventions at the regency level. To enhance interpretability, 
the SHAP values will be analyzed through cluster analysis to categorize underdeveloped regencies 
into distinct groups. This approach provides a clearer understanding of the key variables that should 
be prioritized in designing programs aimed at alleviating underdevelopment in each regency. Based 
on this background, this study aims to: 

1. Provide a comprehensive overview of regency underdevelopment in Indonesia and its influencing 
variables during the National Medium-Term Development Plan (RPJMN) period of 2000–2024; 

2. Develop a predictive model for regency underdevelopment in Indonesia using Logistic Regression, 
Random Forest, and Support Vector Machine (SVM); 

3. Identify the key variables influencing regency underdevelopment status in Indonesia using the 
model-agnostic SHAP approach; 

4. Conduct cluster analysis based on the SHAP values. 

2. Method  

2.1. Research Coverage 

The unit of analysis in this study comprises all regencies in Indonesia classified as underdeveloped 
based on Presidential Regulation (Perpres) No. 63 of 2020. The study covers a total of 415 regencies, 
of which 62 are classified as underdeveloped, while the remaining 353 are non-underdeveloped 
regencies. The Thousand Islands Regency is excluded from the analysis, as it is an administrative 
regency under the jurisdiction of the DKI Jakarta provincial government and possesses distinct 
characteristics compared to other regencies. The following is a list of underdeveloped regencies as 
defined by Perpres No. 63 of 2020. 

Table 1. Underdeveloped Regencies During the RPJMN 2020–2024 Period 

No Province Regency No Province Regency 
1 North Sumatera  Nias 32 North Mauku Taliabu Islands 

2 North Sumatera  South Nias 33 West Papua Wondama Bay 

3 North Sumatera  North Nias  34 West Papua Bintuni Bay 

4 North Sumatera  West Nias  35 West Papua South Sorong  

5 West Sumatera Mentawai Islands 36 West Papua Sorong 

6 South Sumatera  North Musi Rawas  37 West Papua Tambrauw 

7 Lampung West Coast 38 West Papua Maybrat 

8 West Nusa Tenggara North Lombok  39 West Papua South Manokwari  

9 East Nusa Tenggara  West Sumba  40 West Papua Arfak Mountains 

10 East Nusa Tenggara East Sumba  41 Papua Jayawijaya 

11 East Nusa Tenggara Kupang 42 Papua Nabire 

12 East Nusa Tenggara South Central Timor 43 Papua Paniai 

13 East Nusa Tenggara Belu 44 Papua Puncak Jaya 

14 East Nusa Tenggara Alor 45 Papua Boven Digoel 

15 East Nusa Tenggara Lembata 46 Papua Mappi 

16 East Nusa Tenggara Rore Ndao 47 Papua Asmat 

17 East Nusa Tenggara Central Sumba  48 Papua Yahukimo 

18 East Nusa Tenggara Southwest Sumba  49 Papua Bintang Mountains 

19 East Nusa Tenggara East Manggarai  50 Papua Tolikara 

20 East Nusa Tenggara Sabu Raijua 51 Papua Keerom 

21 East Nusa Tenggara Malaka 52 Papua Waropen 

22 Central Sulawesi Donggala 53 Papua Supiori 

23 Central Sulawesi Tojo Una-una 54 Papua Greater Mamberamo 
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24 Central Sulawesi Sigi 55 Papua Nduga 

25 Maluku West Southeast Maluku 56 Papua Lanny jaya 

26 Maluku Aru Islands 57 Papua Central Mamberamo 

27 Maluku West Seram  58 Papua Yalimo  

28 Maluku East Seram  59 Papua Puncak 

29 Maluku Southwest Maluku 60 Papua Dogiyai 

30 Maluku South Buru  61 Papua Intan Jaya 

31 North Maluku Sula Islands 62 Papua Deiyai 

 

The variables used in this study consist of a response variable, namely the underdevelopment 

status (1 = Underdeveloped Regency, 0 = Non-Underdeveloped Regency), and 22 predictor variables. 

All variables are based on 2021 data obtained from Statistics Indonesia (BPS) and the Ministry of 

Finance. Some of the data used in this study were obtained from BPS (Statistics Indonesia), 

specifically from the Village Potential Statistics of Indonesia (PODES) and the National Socio-

Economic Survey (SUSENAS). PODES is a census-based data collection effort that covers all 

administrative regions, including regencies/municipalities, districts, and the lowest-level government 

administrative units equivalent to villages. In contrast, SUSENAS is a regular household-based survey 

conducted by BPS, providing essential socio-economic development data. SUSENAS is carried out 

in March and September each year. This study utilizes data from the March round of SUSENAS, 

which includes a sample of approximately 345,000 households and allows for statistical reporting at 

the national, provincial, and regency/municipality levels. All data used in this study are from the year 

2021, aligned with the classification of underdeveloped regencies outlined in the 2020–2024 National 

Medium-Term Development Plan (RPJMN). 

Table 2. Predictor Variables and Data Sources 

Variable Description Data Source 
X1 Percentage of villages with retail stores PODES, BPS 

X2 Percentage of villages with healthcare facilities PODES, BPS 

X3 Percentage of villages with doctors PODES, BPS 

X4 Percentage of villages with primary schools PODES, BPS 

X5 Percentage of villages with junior high schools PODES, BPS 

X6 Percentage of households with electricity access SUSENAS, BPS 

X7 Percentage of households with telephone/mobile phone access SUSENAS, BPS 

X8 Percentage of population using the internet SUSENAS, BPS 

X9 Percentage of households with access to clean water SUSENAS, BPS 

X10 
Percentage of villages where the main road surface is predominantly 

asphalt/concrete 
PODES, BPS 

X11 Percentage of villages with easy access to healthcare facilities PODES, BPS 

X12 Percentage of villages with easy access to junior high schools PODES, BPS 

X13 Percentage of villages not experiencing natural disasters PODES, BPS 

X14 Percentage of villages not experiencing social conflicts PODES, BPS 

X15 
Gross Regional Domestic Product (GRDP) at constant prices per capita (million 

IDR) 
BPS 

X16 Percentage of household expenditure on non-food items SUSENAS, BPS 

X17 Percentage of employed individuals working in non-agricultural sectors SUSENAS, BPS 

X18 
Percentage of women aged 15–49 who gave birth in the past two years assisted by 

medical professionals 

SUSENAS, BPS 

X19 Percentage of children under five receiving complete immunization SUSENAS, BPS 

X20 Junior high school enrollment rate SUSENAS, BPS 

X21 Senior high school enrollment rate SUSENAS, BPS 

X22 Locally-Generated Revenue (PAD) per capita (thousand IDR) 
Ministry of 

Finance 

Notes: BPS (Badan Pusat Statistik) = Statistics Indonesia 
           PODES = Potensi Desa = Village Potential Statistics of Indonesia 
           SUSENAS = Survei Sosial Ekonomi Nasional = National Socio-Economic Survey  

2.2. Analysis Method 

The analysis methods used in this research include descriptive and predictive analyses. The 
descriptive analysis employs a thematic map to provide an overview of the distribution of 
underdeveloped regencies and a boxplot to illustrate the data distribution of the predictor variables 
involved. Additionally, SHAP and cluster analysis are utilized to assess the contribution of the 
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variables determining these underdeveloped regions. Predictive analysis is conducted using logistic 
regression, Random Forest, and SVM. Logistic regression serves as a representation of a traditional 
statistical classification model, while Random Forest and SVM represent black-box models expected 
to deliver higher accuracy compared to the logistic regression model. The stages undertaken in this 
research are as follows:  

1. Conduct descriptive analysis using thematic maps and boxplots 
2. Separate the data into training and testing sets with an 80:20 ratio 
3. Modeling with logistic regression 

- Perform logistic regression modeling with training data. The logistic regression 

estimation equation is as follows: 

𝑙𝑜𝑔𝑖𝑡 [𝜋̂(𝑥)] = ln
𝜋̂(𝑥)

1 − 𝜋̂(𝑥)
= 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2 + ⋯ + 𝛽22𝑥22 

- Predicting underdeveliped regencies from the logistic regression estimation equation 

formed using the testing data. 

4. Modeling with Random Forest 

- Random Forest modeling using training data with parameter cp: 0,01; minsplit: 20, 

maxdepth: 30, dan xval: 10   

- Predicting underdeveloped regencies from the Random Forest model formed using 

testing data 

5. Modeling with SVM 

- SVM modeling using training data with parameters Kernel = "radial", cost = 100, 

gamma = 0.1   

- Predicting underdeveloped regencies from the SVM model formed using testing data 
6. Constructing a classification table to summarize the results of logistic regression, Random Forest, 

and SVM models. The classification table, as shown in Table 3, consists of four cells containing 
the values for true positive (TP), which represents the success category correctly predicted as 
success; false negative (FN), where the success category is incorrectly predicted as failure; true 
negative (TN), where the failure category is correctly predicted as failure; and false positive (FP), 
where the failure category is incorrectly predicted as success. In this context, the success category 
refers to underdeveloped regencies, while the failure category refers to non-underdeveloped 
regencies. 

Table 3. Classification Table 

 
Predicted 

Success Failure 

Observed 
Success TP FN 

Failure FP TN 

 
Based on the classification table, the following performance metrics can be derived: Sensitivity 
(True Positive Rate): The probability that the success category is correctly predicted. Specificity 
(True Negative Rate): The probability that the failure category is correctly predicted. Accuracy: 
The ratio of correct predictions (both success and failure) to the total number of predictions  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

7. Selecting the best model based on the highest accuracy, followed by a post-hoc XAI analysis using 
SHAP  

8. Using the SHAP method to compute the Shapley values for each observation through the following 
steps [8, 16]: 

- Selecting 100 random samples from the set of permuted subsets of 22 variables using 

the Monte Carlo sampling approach. The utilization of samples in SHAP value 
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computation is necessitated by the large number of variables involved, which renders 

the use of all possible subset permutations inefficient.  

- Estimating the Shapley value for variable i (𝜙𝑖) for each sample using the following 

formulation: 

𝜙𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑠)]

𝑆⊆𝐹{𝑖}

 

wehre F represents the set of sampled variables, 𝑥𝑆 represents the value of the input 

variables in the set 𝑆 

- Calculating the average SHAP value from the 100 sampled observations 
9. Repeating Step 8 for 10 randomly selected iterations for underdeveloped regencies. This process 

will be demonstrated for one underdeveloped regency, namely Southwest Maluku. The ten SHAP 
values for each variable will be presented in a boxplot to assess the stability of the estimated SHAP 
values for each variable. 

10. Displaying the SHAP value plots, demonstrated for two regencies: Southwest Maluku and 
Mentawai Islands. 

11. Performing cluster analysis using hierarchical clustering, a method used to construct a hierarchy 
of clusters. Hierarchical clustering has an advantage over partition-based clustering methods, as it 
does not require specifying the number of clusters in advance [17, 18]. SHAP value cluster analysis 
is conducted through the following steps: 

- Summing the SHAP values for each underdeveloped regency into six variable groups: economy, 

health, education, accessibility, social, and infrastructure.   

- Selecting the best linkage method based on the Agglomerative Coefficient (AC), calculated 

using the following formula [19] : 

𝐴𝐶 =
1

𝑛
∑ 𝑙(𝑖)

𝑛

𝑖=1

 

where  

𝑙(𝑖) =
ℎ(𝑖) − min (ℎ)

max(ℎ) − min (ℎ)
 

ℎ(𝑖) : linkage height when the object 𝑖 joins the hierarchical clustering 

min (ℎ): minimum value of linkage height in the dendrogram 

max(ℎ) : maximum value of linkage height in the dendrogram 

The AC value ranges from 0 to 1, where the higher the AC value (closer to 1), the 

stronger the cluster structure formed. 

- Selecting the optimal number of K by using Gap Statistics [20]  

- Determine the average SHAP value of each group of variables for each cluster 

- Evaluate the clusters formed by comparing the group means of variables between clusters 

through Multivariate Analysis of Variance (MANOVA). This method requires the fulfillment 

of assumptions such as multivariate normal and homogeneity of variance. If these assumptions 

are not met, an alternative that can be used is a non-parametric method based on permutation 

tests, namely Permutational Multivariate Analysis of Variance (PERMANOVA) [21]. 

- Interpreting the results of  cluster 

3. Results and Discussion 

3.1. Overview of Underdeveloped Regencies in Indonesia 

Development disparities in Indonesia have led to certain regencies being less developed compared 
to others. In 2020, the government designated 62 regencies as underdeveloped, distributed across the 
country. As illustrated in Fig. 1, the majority of these underdeveloped regencies are concentrated in 
Eastern Indonesia, particularly in the Maluku Islands (8 regencies) and Papua Island (30 regencies). 
In Central Indonesia, underdeveloped areas are found in Sulawesi Island (3 regencies) and the Nusa 
Tenggara Islands (14 regencies). Meanwhile, in Western Indonesia, there are 7 underdeveloped 
regencies, all of which are located on Sumatra Island. 
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Fig. 1.  Map of the Distribution of Underdeveloped Regencies 

Based on Fig. 2, variables exhibiting significant variation among underdeveloped regencies 
include the percentage of villages with elementary schools (X4), the percentage of villages that did 
not experience natural disasters (X13), and the percentage of villages with the widest main road 
surface made of asphalt/concrete (X10). The median values of predictor variables for underdeveloped 
regencies are lower than those for developed regencies, except for the percentage of villages that did 
not experience natural disasters (X13). The variable with the highest median in underdeveloped 
regencies is the percentage of villages that did not experience social conflicts (X14).  

 

 

 

 

 

 

 

 

 

Fig. 2. Boxplot of Predictor Variables by Classification Status 

A stark contrast between underdeveloped and developed regencies is evident in the percentage of 
households with electricity access (X6), where nearly all developed regencies have reached 100 
percent, whereas some underdeveloped regencies still have percentages below 75 percent. Disparities 
are also observed in the percentage of villages with the widest main road surface made of 
asphalt/concrete (X10), as many underdeveloped regencies still have poor road access. The lowest 
median values are found in the percentage of villages with retail stores (X1) and the percentage of 
villages with doctors (X3).  
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3.2. Model Performance Comparison: Logistic Regression, Random Forest, and Support 

Vector Machine 

Based on Table 4, the evaluation of the three models using testing data indicates that the Support 
Vector Machine (SVM) exhibits the highest sensitivity, achieving a value of 0.8333. This implies that 
83.33% of regencies classified as underdeveloped are correctly identified by the model. Meanwhile, 
the highest specificity is attained by both the Random Forest and SVM models, with an identical value 
of 0.9714, signifying that 97.14% of regencies classified as developed are accurately predicted. In 
terms of overall classification performance, SVM demonstrates the highest accuracy. The superior 
predictive capability of SVM over Random Forest is consistent with findings from prior studies that 
have compared the efficacy of these machine learning models in similar classification tasks [22-24]. 
Based on these results, the subsequent post-hoc analysis using SHAP will be conducted with reference 
to the SVM model.  

Table 4. Comparison of Model Performance Using Testing Data 

Method Sensitivity Specificity Accuracy 
Logistic Regression 0.7500 0.9571 0.9268 

Random Forest 0.6667 0.9714 0.9268 
Support Vector Machine 0.8333 0.9714 0.9512 

 

3.3. Shapley Additive Explanations (SHAP) 

Before proceeding with the SHAP method further, it is essential to assess the stability of SHAP 

values. This stability is crucial for drawing more reliable conclusions regarding which variables 

significantly contribute to identifying the underdevelopment status of a regency. The stability 

assessment is conducted by computing SHAP values for each variable in specific underdeveloped 

regencies (in this case, exemplified by Southwest Maluku Regency and Mentawai Islands Regency) 

using 100 samples drawn from the total permutation set of 22 variables, repeated across 10 iterations. 

The decision to use a sufficiently large sample size is based on the previous study by Zhang, et al. [25] 

with the expectation of reducing the error ratio in determining the most influential variables, the SHAP 

values for 10 iterations are presented in Fig. 3. The estimated SHAP values for each variable in 

Southwest Maluku Regency over 10 iterations exhibit a high degree of homogeneity, as evidenced by 

the maximum standard deviation of SHAP values for each variable being 0.05, observed in variable 

X14. Meanwhile, in the Mentawai Islands Regency, the highest standard deviation is 0.06, found in 

variable X6. Despite having the largest standard deviation among all variables, X14 in Southwest 

Maluku Regency consistently emerges as the most influential variable across all iterations. Similarly, 

SHAP values for X6 in Mentawai Islands Regency follow the same pattern 

Fig. 3. Boxplot of Estimated SHAP Values for Each Predictor Variable Across 10 Iterations in (a) Southwest 

Maluku Regency and (b) Mentawai Islands Regency. 

Since the variables with the highest contributions, as shown in Fig. 3, demonstrate sufficient 
stability, the SHAP method will be employed to explain the key contributing variables in each 
underdeveloped regency. Figure 4 presents an example of the SHAP value plots generated for (a) 
Southwest Maluku Regency and (b) Mentawai Islands Regency. The most influential variable in 
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Southwest Maluku Regency is the percentage of villages without social conflicts (X14), which falls 
under the social category. In contrast, in Mentawai Islands Regency, the key variable is the percentage 
of households using electricity (X6), which belongs to the infrastructure category 

Fig. 4. SHAP Values for (a) Southwest Maluku Regency, (b) Mentawai Islands Regency 

3.4. Clustering of Regencies Based on SHAP Values 

To facilitate the interpretation of SHAP values for the 62 underdeveloped regencies, clustering 
analysis was conducted using the Hierarchical Clustering method. Based on the Agglomerative 
Coefficient, the Ward method yielded the highest value (0.9321) compared to single linkage (0.5687), 
average linkage (0.8122), and complete linkage (0.8642). Therefore, the Ward method was selected 
as the optimal clustering approach. One of the advantages of the Ward method is its ability to minimize 
variance within clusters while simultaneously maximizing the distance between clusters [26]. To 
determine the optimal number of clusters, a simulation was conducted using randomly generated 
datasets of 500; 1,000; 5,000; and 10,000 samples. The optimal number of clusters was selected based 
on the highest gap statistic value observed before it subsequently declined. Based on the simulation 
results presented in Table 5, the optimal number of clusters was determined to be five. 

Table 5. Simulation Results for Gap Statistics Calculation 

K 
B=500 B=1000 B=5000 B=10000 

Gap SE Gap SE Gap SE Gap SE 
1 0.32675 0.02926 0.32424 0.02982 0.32641 0.02971 0.32601 0.02956 

2 0.37102 0.03079 0.36962 0.03109 0.37176 0.03066 0.37114 0.03061 

3 0.42822 0.03083 0.42606 0.02971 0.42846 0.02969 0.42791 0.02963 

4 0.43770 0.03130 0.43732 0.02956 0.43873 0.02971 0.43810 0.02933 

5 0.45047 0.03018 0.45098 0.03002 0.45170 0.02953 0.45109 0.02895 

6 0.44581 0.02985 0.44676 0.03045 0.44701 0.02948 0.44644 0.02903 

7 0.45387 0.02975 0.45474 0.03081 0.45489 0.02970 0.45440 0.02925 

8 0.46933 0.03000 0.47023 0.03129 0.47045 0.02998 0.47008 0.02952 
9 0.49889 0.03048 0.49957 0.03176 0.49978 0.03043 0.49962 0.02988 

10 0.50937 0.03102 0.51000 0.03206 0.51022 0.03095 0.51020 0.03027 

SE: Standard Error 

To evaluate the formed clusters, a mean difference test was conducted to ensure that the clusters 
are distinct and can subsequently be used to identify variable groups (categories) that should be 
prioritized in addressing regency underdevelopment. Based on the results of the multivariate normality 
test and homogeneity of variance test, a p-value of less than 0.05 was obtained. Consequently, it can 
be concluded that the assumptions of multivariate normality and homogeneity of variance were not 
met. Therefore, the PERMANOVA method was employed to perform the multivariate mean 
difference test. The test results yielded a pseudo-F value of 30.38 with a p-value of 0.001. These 
findings indicate that at least one pair of clusters is significantly different. Subsequently, a post-hoc 
test was conducted using pairwise PERMANOVA to identify which cluster pairs exhibited significant 
differences. The test results are presented in Fig. 5.  
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Fig. 5. P-Value Based on Pairwise PERMANOVA Test Results 

Based on Fig. 5, it can be concluded that the average SHAP values for all cluster pairs differ at a 
significance level of 0.05. Thus, it can be concluded that each cluster is significantly different from 
the others. The clustering results obtained using the Hierarchical Clustering method with Ward's 
approach and five clusters are presented in Fig. 6. 

 

Fig. 6. Dendrogram of Underdeveloped Regencies with Five Clusters 

The average SHAP values for each cluster are presented in Table 6. Based on these SHAP values, the 
key categories that the government should prioritize to alleviate underdevelopment in each cluster can 
be identified.  

Table 6. Average SHAP Values by Cluster and Category  

Cluster Economy Health Education Accesibility Social Infrastructure 
1 0.0969 0.1346 0.0754 0.0915 0.4492 0.1062 
2 0.1023 0.0955 0.0727 0.1227 0.0255 0.5509 
3 0.0100 0.0350 0.0250 0.8500 0.0150 0.1900 

4 0.0469 0.2256 0.1281 0.1756 0.0600 0.3244 

5 0.1744 0.1378 0.0989 0.2478 0.0489 0.1011 
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Based on Fig. 6 and Table 6, the following explanations can be provided: 

Cluster 1 consists of 13 regencies, predominantly from East Nusa Tenggara Province and Maluku 
Province. Additionally, there is one regency from North Sumatra Province, namely North Nias. In this 
cluster, the highest average SHAP value is observed in the social category, which dominates compared 
to other categories. The government should focus on variables related to social aspects, particularly 
addressing issues of social conflict within the community.   

Cluster 2 is the largest cluster, comprising 22 regencies. This cluster is predominantly composed of 
regencies located in Eastern Indonesia, particularly in Papua Province. Additionally, there is one 
regency from Western Indonesia, namely Mentawai Islands Regency (West Sumatra Province). In 
this cluster, the highest average SHAP value is found in the infrastructure category. The government 
should prioritize addressing underdevelopment variables related to infrastructure, such as electricity 
supply, clean water access, and internet connectivity. 

Cluster 3 consists of two regencies, both located in Papua Province (Boven Digoel and Keerom). In 
this cluster, the highest average SHAP value falls within the accessibility category. Efforts to alleviate 
underdevelopment in this cluster should focus on expanding asphalt/concrete road networks, as well 
as improving access to healthcare and educational facilities.  

Cluster 4 comprises 16 regencies. A significant portion of the underdeveloped regencies in Western 
Indonesia fall into this cluster, including Nias, West Nias, South Nias, North Musi Rawas, and West 
Coast. Additionally, this cluster includes regencies from North Maluku Province (Taliabu Islands), 
Maluku Province (Aru Islands), and the remaining regencies from Papua and West Papua Provinces. 
In this cluster, relatively high average SHAP values are observed in the infrastructure, accessibility, 
education, and health categories.    

Cluster 5 consists of nine regencies. This cluster includes three regencies located in Central Indonesia, 
specifically on Sulawesi Island (Donggala, Sigi, and Tojo Una-Una) and the Nusa Tenggara Islands 
(North Lombok, Kupang, and Lembata), as well as regencies in Eastern Indonesia (Sorong, Bintuni 
Bay, and Nabire). In this cluster, government efforts to address underdevelopment should focus not 
only on accessibility but also on economic development. 

3.5. Discussion 

The results of the analysis using the Random Forest algorithm, followed by interpretation through 
the SHAP method, indicate that the determinants of underdeveloped regencies vary significantly 
across regions in Indonesia. In western Indonesia, influential variables are predominantly related to 
infrastructure, and access to education and healthcare services. Conversely, in eastern Indonesia, basic 
infrastructure indicators such as access to electricity, clean water, and internet connectivity play a 
more prominent role. Furthermore, this study reveals that Maluku Province demonstrates a unique 
pattern, where social aspects—particularly those related to local social conflicts—emerge as critical 
determinants of underdevelopment, distinguishing it from other provinces in eastern Indonesia. 

These findings are consistent with prior research, such as Deffinika, et al. [27], which emphasized 
the influence of geographical and spatial factors in shaping multidimensional poverty, thereby 
underlining the need for geographically targeted government interventions. Similarly, Shoesmith, et 
al. [28] highlighted the inefficacy of nationally implemented policies—such as Indonesia’s radical 
decentralization program—when local conditions are not adequately considered, as exemplified in 
South Central Timor Regency, East Nusa Tenggara. The insights from this study can inform 
policymakers in designing more effective strategies for addressing regional underdevelopment and 
promoting equitable development across regions. A community-focused and context-sensitive 
approach is recommended, with programs tailored to the specific socio-economic characteristics of 
each province, island, or region. 

 Although the Random Forest method has been applied in previous studies for regional 
classification and spatial poverty analysis (e.g., Ramayanti, et al. [29]; Sukarna, et al. [30]; Ilma, et al. 
[31]), its integration with SHAP for interpreting the categorization of underdeveloped regencies in 
Indonesia remains relatively novel. This combined approach holds considerable potential, as it 
captures complex nonlinear relationships among variables and yields locally interpretable insights that 
can be directly linked to regional policy formulation. 
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4. Conclusion 

The majority of underdeveloped regencies in Indonesia are located on Papua Island. The predictor 
variable with the highest median among underdeveloped regencies is the percentage of villages that 
have not experienced social conflict, while the variable with the lowest median is the percentage of 
villages with a doctor. Based on model performance, SVM outperforms logistic regression and 
Random Forest as the best model. The estimated SHAP values for each variable across 10 iterations 
exhibit homogeneity and sufficient stability. Therefore, the SHAP method can be reliably used to 
explain the key contributing variables in each underdeveloped regency. Cluster analysis results 
indicate that the optimal number of clusters for classifying underdeveloped regencies is five. Based 
on the average SHAP values obtained across all categories in each cluster, it can be concluded that 
underdevelopment alleviation efforts should prioritize the social category for Cluster 1, infrastructure 
for Cluster 2, accessibility for Cluster 3, infrastructure, accessibility, education, and health for Cluster 
4, and both accessibility and economic development for Cluster 5. The study reveals that the 
determinants of underdeveloped regencies in Indonesia vary across regions, with infrastructure, 
education, and health access being more influential in the western part, while basic infrastructure such 
as electricity, clean water, and internet connectivity dominate in the eastern regions. Notably, Maluku 
Province exhibits a distinct pattern, where social conflict emerges as a key factor, highlighting the 
importance of geographically tailored interventions. These findings underscore the value of 
combining Random Forest with SHAP to capture regional complexities and support more targeted 
and effective development policies. 
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