(2) Hindriyanto Dwi Purnomo (Faculty of Information Technology, Master of Information Systems, Satya Wacana Christian University, Indonesia)
(3) Irwan Sembiring (Faculty of Information Technology, Master of Information Systems, Satya Wacana Christian University, Indonesia)
*corresponding author
AbstractMind-uploading, the vision of transferring human consciousness into a digital realm, relies on a profound comprehension of the brain and cutting-edge technology. Non-invasive cognitive Brain-Computer Interfaces (BCI) offer a promising avenue for delving into neural activity and bridging the brain-machine gap. This research explores the potential of non-invasive cognitive BCI in realizing mind-uploading through a systematic literature review (SLR), analyzing recent research that focuses on its current progress and implications for mind-uploading. The SLR unveils significant strides in non-invasive cognitive BCI, demonstrating increased precision in recording and decoding cognitive processes and fostering a deeper understanding of these processes. This progress is attributed to a diverse range of emerging feature extraction and decoding methods, transforming subtle neural signals into interpretable commands. Notably, advancements in signal processing and neuroimaging techniques enhance communication speed and clarity between the brain and computer. Furthermore, the development of cost-effective methods, frameworks, and hardware holds the promise of broader accessibility to BCI technology. However, significant hurdles remain. The computational demands of current cognitive BCI systems pose a substantial challenge, while the scarcity of high-quality training datasets hampers algorithm development and accuracy. The poor signal quality causes difficulties in recording neural complexity and hampers accuracy. In conclusion, non-invasive cognitive BCI has significant potential to pave the way for mind-uploading. However, its limitations, make their capabilities remain insufficient to fully realize this ambitious vision. This highlights the critical need for sustained research and innovation to bridge the gap between current understanding and the exciting realm of mind-uploading.
KeywordsMind-Uploading, Whole Brain Emulation, Non-Invasive Cognitive BCI, Progress of Non-Invasive Cognitive BCI, Limitation of Non-Invasive Cognitive BCI
|
DOIhttps://doi.org/10.29099/ijair.v8i1.1133 |
Article metrics10.29099/ijair.v8i1.1133 Abstract views : 575 | PDF views : 110 |
Cite |
Full TextDownload |
References
IMDb, “Tron: Legacy,” imdb.com. Accessed: Oct. 21, 2023. [Online]. Available: https://www.imdb.com/title/tt1104001/
IMDb, “Upload,” imdb.com. Accessed: Oct. 21, 2023. [Online]. Available: https://www.imdb.com/title/tt7826376/?ref_=nv_sr_srsg_0
S. Saha et al., “Progress in Brain Computer Interface: Challenges and Opportunities,” Front Syst Neurosci, vol. 15, 2021, doi: 10.3389/fnsys.2021.578875.
Sweeti, “Attentional load classification in multiple object tracking task using optimized support vector machine classifier: a step towards cognitive brain–computer interface,” J Med Eng Technol, vol. 46, no. 1, pp. 69–77, 2022, doi: 10.1080/03091902.2021.1992519.
J. Truby and R. Brown, “Human digital thought clones: the Holy Grail of artificial intelligence for big data,” Information and Communications Technology Law, vol. 30, no. 2, 2021, doi: 10.1080/13600834.2020.1850174.
J. Huberman, “Immortality transformed: mind cloning, transhumanism and the quest for digital immortality,” Mortality, vol. 23, no. 1, 2018, doi: 10.1080/13576275.2017.1304366.
M. Savin-Baden and D. Burden, “Digital Immortality and Virtual Humans,” Postdigital Science and Education, vol. 1, no. 1, 2019, doi: 10.1007/s42438-018-0007-6.
A. G. Lazcano-Herrera, R. Q. Fuentes-Aguilar, I. Chairez, L. M. Alonso-Valerdi, M. Gonzalez-Mendoza, and M. Alfaro-Ponce, “Review on BCI Virtual Rehabilitation and Remote Technology Based on EEG for Assistive Devices,” Applied Sciences (Switzerland), vol. 12, no. 23. 2022. doi: 10.3390/app122312253.
O. Maslova et al., “Non-invasive EEG-based BCI spellers from the beginning to today: a mini-review,” Frontiers in Human Neuroscience, vol. 17. 2023. doi: 10.3389/fnhum.2023.1216648.
S. Rainey, S. Martin, A. Christen, P. Mégevand, and E. Fourneret, “Brain Recording, Mind-Reading, and Neurotechnology: Ethical Issues from Consumer Devices to Brain-Based Speech Decoding,” Sci Eng Ethics, vol. 26, no. 4, 2020, doi: 10.1007/s11948-020-00218-0.
B. Chomanski, “Sims and Vulnerability: On the Ethics of Creating Emulated Minds,” Sci Eng Ethics, vol. 28, no. 6, 2022, doi: 10.1007/s11948-022-00416-y.
N. Jamil, A. N. Belkacem, S. Ouhbi, and A. Lakas, “Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain–computer interfaces: A systematic literature review,” Sensors, vol. 21, no. 14. 2021. doi: 10.3390/s21144754.
R. M. Awangga, T. L. R. Mengko, and N. P. Utama, “A literature review of brain decoding research,” in IOP Conference Series: Materials Science and Engineering, 2020. doi: 10.1088/1757-899X/830/3/032049.
A. Aziz Marzuki, N. Norliati Fitri Md Nor, and S. Masayu Rosliah Abdul Rashid, “Systematic Literature Review (SLR) on Community Support Among the Older Adults,” Ageing International, vol. 48, no. 4. 2023. doi: 10.1007/s12126-023-09518-9.
O. Gulsia and S. Yadav, “Conceptualizing network approaches for a successful farm entrepreneurship using ATLAS.ti®,” Sustainable Technology and Entrepreneurship, vol. 2, no. 1, 2023, doi: 10.1016/j.stae.2022.100026.
C. Dumitrescu, I. M. Costea, and A. Semenescu, “Using brain?computer interface to control a virtual drone using non?invasive motor imagery and machine learning,” Applied Sciences (Switzerland), vol. 11, no. 24, 2021, doi: 10.3390/app112411876.
A. Gaume, G. Dreyfus, and F. B. Vialatte, “A cognitive brain–computer interface monitoring sustained attentional variations during a continuous task,” Cogn Neurodyn, vol. 13, no. 3, pp. 257–269, Jun. 2019, doi: 10.1007/s11571-019-09521-4.
B. McCartney, B. Devereux, and J. Martinez-del-Rincon, “A zero-shot deep metric learning approach to Brain–Computer Interfaces for image retrieval,” Knowl Based Syst, vol. 246, Jun. 2022, doi: 10.1016/j.knosys.2022.108556.
M. H. Lee, J. Williamson, D. O. Won, S. Fazli, and S. W. Lee, “A High Performance Spelling System based on EEG-EOG Signals with Visual Feedback,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 7, pp. 1443–1459, Jul. 2018, doi: 10.1109/TNSRE.2018.2839116.
S. Sridhar and V. Manian, “Assessment of cognitive aging using an ssvep-based brain–computer interface system,” Big Data and Cognitive Computing, vol. 3, no. 2, pp. 1–14, Jun. 2019, doi: 10.3390/bdcc3020029.
R. Varandas, R. Lima, S. B. I. Badia, H. Silva, and H. Gamboa, “Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning,” Sensors, vol. 22, no. 11, Jun. 2022, doi: 10.3390/s22114010.
G. Papanastasiou, A. Drigas, C. Skianis, and M. Lytras, “Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review,” Heliyon, vol. 6, no. 9, Sep. 2020, doi: 10.1016/j.heliyon.2020.e04250.
S. Cai, T. Schultz, and H. Li, “Brain Topology Modeling With EEG-Graphs for Auditory Spatial Attention Detection,” IEEE Trans Biomed Eng, 2023, doi: 10.1109/TBME.2023.3294242.
M. Spape, K. M. Davis, L. Kangassalo, N. Ravaja, Z. Sovijarvi-Spape, and T. Ruotsalo, “Brain-Computer Interface for Generating Personally Attractive Images,” IEEE Trans Affect Comput, vol. 14, no. 1, pp. 637–649, Jan. 2023, doi: 10.1109/TAFFC.2021.3059043.
D. H. Lee, J. H. Jeong, K. Kim, B. W. Yu, and S. W. Lee, “Continuous EEG Decoding of Pilots’ Mental States Using Multiple Feature Block-Based Convolutional Neural Network,” IEEE Access, vol. 8, pp. 121929–121941, 2020, doi: 10.1109/ACCESS.2020.3006907.
T. Chen et al., “Decoding different working memory states during an operation span task from prefrontal fNIRS signals,” Biomed Opt Express, vol. 12, no. 6, pp. 3495–3511, Jun. 2021, doi: 10.1364/boe.426731.
H. Yu, Q. Zhao, S. Li, K. Li, C. Liu, and J. Wang, “Decoding Digital Visual Stimulation From Neural Manifold With Fuzzy Leaning on Cortical Oscillatory Dynamics,” Front Comput Neurosci, vol. 16, Mar. 2022, doi: 10.3389/fncom.2022.852281.
M. Chung et al., “Decoding Imagined Musical Pitch From Human Scalp Electroencephalograms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 2154–2163, 2023, doi: 10.1109/TNSRE.2023.3270175.
K. W. Lee, D. H. Lee, S. J. Kim, and S. W. Lee, “Decoding Neural Correlation of Language-Specific Imagined Speech using EEG Signals,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 1977–1980. doi: 10.1109/EMBC48229.2022.9871721.
T. Kang, Y. Chen, S. Fazli, and C. Wallraven, “EEG-Based prediction of successful memory formation during vocabulary learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 11, pp. 2377–2389, Nov. 2020, doi: 10.1109/TNSRE.2020.3023116.
R. Nawaz, G. Wood, H. Nisar, and V. V. Yap, “Exploring the Effects of EEG-Based Alpha Neurofeedback on Working Memory Capacity in Healthy Participants,” Bioengineering, vol. 10, no. 2, Feb. 2023, doi: 10.3390/bioengineering10020200.
B. J. Edelman, J. Meng, N. Gulachek, C. C. Cline, and B. He, “Exploring cognitive flexibility with a noninvasive BCI using simultaneous steady-state visual evoked potentials and sensorimotor rhythms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 5, pp. 936–947, May 2018, doi: 10.1109/TNSRE.2018.2817924.
Y. C. Chang, Y. K. Wang, N. R. Pal, and C. T. Lin, “Exploring Covert States of Brain Dynamics via Fuzzy Inference Encoding,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 2464–2473, 2021, doi: 10.1109/TNSRE.2021.3126264.
D. Wen et al., “Feature Extraction Method of EEG Signals Evaluating Spatial Cognition of Community Elderly With Permutation Conditional Mutual Information Common Space Model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 2370–2380, 2023, doi: 10.1109/TNSRE.2023.3273119.
K. Mu, “Memory Engram Studies and the Brain-computer Interface: The Possibility of Visibly Artificial Memory Retrieval,” in Proceedings of the 2021 International Conference on Social Development and Media Communication (SDMC 2021), 2022, pp. 992–996.
M. V. Khramova et al., “Monitoring the cortical activity of children and adults during cognitive task completion,” Sensors, vol. 21, no. 18, Sep. 2021, doi: 10.3390/s21186021.
R. A. Sharon, S. S. Narayanan, M. Sur, and A. Hema Murthy, “Neural Speech Decoding during Audition, Imagination and Production,” IEEE Access, vol. 8, pp. 149714–149729, 2020, doi: 10.1109/ACCESS.2020.3016756.
L. Kangassalo, M. Spapé, and T. Ruotsalo, “Neuroadaptive modelling for generating images matching perceptual categories,” Sci Rep, vol. 10, no. 1, pp. 1–10, Dec. 2020, doi: 10.1038/s41598-020-71287-1.
A. I. Renton, J. B. Mattingley, and D. R. Painter, “Optimising non-invasive brain-computer interface systems for free communication between naïve human participants,” Sci Rep, vol. 9, no. 1, pp. 1–18, Dec. 2019, doi: 10.1038/s41598-019-55166-y.
J. Kalafatovich, M. Lee, and S.-W. Lee, “Prediction of Memory Retrieval Performance Using Ear-EEG Signals,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 3363–3366.
J. Ekanayake, C. Hutton, G. Ridgway, F. Scharnowski, N. Weiskopf, and G. Rees, “Real-time decoding of covert attention in higher-order visual areas,” Neuroimage, vol. 169, pp. 462–472, Apr. 2018, doi: 10.1016/j.neuroimage.2017.12.019.
J. H. Jeong, J. H. Cho, B. H. Lee, and S. W. Lee, “Real-Time Deep Neurolinguistic Learning Enhances Noninvasive Neural Language Decoding for Brain-Machine Interaction,” IEEE Trans Cybern, pp. 1–14, 2022, doi: 10.1109/TCYB.2022.3211694.
S. R. Yang et al., “Recognizing Tonal and Nontonal Mandarin Sentences for EEG-Based Brain-Computer Interface,” IEEE Trans Cogn Dev Syst, vol. 14, no. 4, pp. 1666–1677, Dec. 2022, doi: 10.1109/TCDS.2021.3137251.
M. Senden, T. C. Emmerling, R. van Hoof, M. A. Frost, and R. Goebel, “Reconstructing imagined letters from early visual cortex reveals tight topographic correspondence between visual mental imagery and perception,” Brain Struct Funct, vol. 224, no. 3, pp. 1167–1183, Apr. 2019, doi: 10.1007/s00429-019-01828-6.
M. Bagheri and S. D. Power, “Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain–Computer Interface,” Sensors, vol. 22, no. 2, Jan. 2022, doi: 10.3390/s22020535.
A. Curtin and H. Ayaz, “The Age of Neuroergonomics: Towards Ubiquitous and Continuous Measurement of Brain Function with fNIRS,” Japanese Psychological Research, vol. 60, no. 4, pp. 374–386, Oct. 2018, doi: 10.1111/jpr.12227.
Y. Yan et al., “Topological EEG-Based Functional Connectivity Analysis for Mental Workload State Recognition,” IEEE Trans Instrum Meas, vol. 72, pp. 1–14, 2023, doi: 10.1109/TIM.2023.3265114.
B. Wittevrongel et al., “Practical real-time MEG-based neural interfacing with optically pumped magnetometers,” BMC Biol, vol. 19, no. 1, 2021, doi: 10.1186/s12915-021-01073-6.
P. Gong, P. Wang, Y. Zhou, and D. Zhang, “A Spiking Neural Network With Adaptive Graph Convolution and LSTM for EEG-Based Brain-Computer Interfaces,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 1440–1450, 2023, doi: 10.1109/TNSRE.2023.3246989.
R. Ma et al., “Bayesian uncertainty modeling for P300-based brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, doi: 10.1109/TNSRE.2023.3286688.
C. Loriette, J. L. Amengual, and S. Ben Hamed, “Beyond the brain-computer interface: Decoding brain activity as a tool to understand neuronal mechanisms subtending cognition and behavior,” Front Neurosci, vol. 16, Sep. 2022, doi: 10.3389/fnins.2022.811736.
H. Li, S. Feng, L. Ma, Z. Xu, R. Xu, and T. P. Jung, “Common Cross-Spectral Patterns of Electroencephalography for Reliable Cognitive Task Identification,” IEEE Access, vol. 8, pp. 17652–17662, 2020, doi: 10.1109/ACCESS.2020.2967814.
P. Singh, P. Pandey, K. Miyapuram, and S. Raman, “EEG2IMAGE: Image Reconstruction from EEG Brain Signals,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Feb. 2023, pp. 1–5. [Online]. Available: http://arxiv.org/abs/2302.10121
N. E. Mughal et al., “EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM,” Front Neurorobot, vol. 16, 2022.
C. H. Han, Y. W. Kim, D. Y. Kim, S. H. Kim, Z. Nenadic, and C. H. Im, “Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient,” J Neuroeng Rehabil, vol. 16, no. 1, Jan. 2019, doi: 10.1186/s12984-019-0493-0.
A. M. Proverbio, M. Tacchini, and K. Jiang, “Event-related brain potential markers of visual and auditory perception: A useful tool for brain computer interface systems,” Front Behav Neurosci, vol. 16, Nov. 2022, doi: 10.3389/fnbeh.2022.1025870.
B. Du, X. Cheng, Y. Duan, and H. Ning, “fMRI Brain Decoding and Its Applications in Brain–Computer Interface: A Survey,” Brain Sci, vol. 12, no. 2, Feb. 2022, doi: 10.3390/brainsci12020228.
S. Huang, W. Shao, M. L. Wang, and D. Q. Zhang, “fMRI-based Decoding of Visual Information from Human Brain Activity: A Brief Review,” International Journal of Automation and Computing, vol. 18, no. 2, pp. 170–184, Apr. 2021, doi: 10.1007/s11633-020-1263-y.
H. Shimizu and R. Srinivasan, “Improving classification and reconstruction of imagined images from EEG signals,” PLoS One, vol. 17, no. 9, Sep. 2022, doi: 10.1371/journal.pone.0274847.
Y. Ding, N. Robinson, C. Tong, Q. Zeng, and C. Guan, “LGGNet: Learning From Local-Global-Graph Representations for Brain-Computer Interface,” IEEE Trans Neural Netw Learn Syst, 2023, doi: 10.1109/TNNLS.2023.3236635.
P. Y. Jeng, C. S. Wei, T. P. Jung, and L. C. Wang, “Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding,” IEEE J Biomed Health Inform, vol. 25, no. 6, pp. 1915–1925, Jun. 2021, doi: 10.1109/JBHI.2020.3025865.
J. Leoni, S. C. Strada, M. Tanelli, and A. M. Proverbio, “MIRACLE: MInd ReAding CLassification Engine,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 3212–3222, 2023, doi: 10.1109/TNSRE.2023.3301507.
Y. J. Zhang, Z. F. Yu, J. K. Liu, and T. J. Huang, “Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches,” Machine Intelligence Research, vol. 19, no. 5, pp. 350–365, Oct. 2022, doi: 10.1007/s11633-022-1335-2.
R. Ma, T. Yu, X. Zhong, Z. L. Yu, Y. Li, and Z. Gu, “Capsule Network for ERP Detection in Brain-Computer Interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 718–730, 2021, doi: 10.1109/TNSRE.2021.3070327.
F. Mason, S. Roy, and G. Prasad, “Data analysis methods for neuroimaging data pre-processing to decode cognitive tasks using logistic regression for BCI applications,” in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2021, pp. 715–720. doi: 10.0/Linux-x86_64.
Y. Zhu, Y. Li, J. Lu, and P. Li, “EEGNet with Ensemble Learning to Improve the Cross-Session Classification of SSVEP Based BCI from Ear-EEG,” IEEE Access, vol. 9, pp. 15295–15303, 2021, doi: 10.1109/ACCESS.2021.3052656.
W. Yan, C. Du, Y. Wu, X. Zheng, and G. Xu, “SSVEP-EEG Denoising via Image Filtering Methods,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1634–1643, 2021, doi: 10.1109/TNSRE.2021.3104825.
V. Changoluisa, P. Varona, and F. De Borja Rodriguez, “A Low-Cost Computational Method for Characterizing Event-Related Potentials for BCI Applications and beyond,” IEEE Access, vol. 8, pp. 111089–111101, 2020, doi: 10.1109/ACCESS.2020.3000187.
S. Jacobsen et al., “Integrated Development Environment for EEG-Driven Cognitive-Neuropsychological Research,” IEEE J Transl Eng Health Med, vol. 8, 2020, doi: 10.1109/JTEHM.2020.2989768.
R. Guarnieri, M. Zhao, G. A. Taberna, M. Ganzetti, S. P. Swinnen, and D. Mantini, “RT-NET: real-time reconstruction of neural activity using high-density electroencephalography,” Neuroinformatics, vol. 19, no. 2, pp. 251–266, Apr. 2021, doi: 10.1007/s12021-020-09479-3.
S. Luo, Q. Rabbani, and N. E. Crone, “Brain-Computer Interface: Applications to Speech Decoding and Synthesis to Augment Communication,” Neurotherapeutics, vol. 19, no. 1, pp. 263–273, Jan. 2022, doi: 10.1007/s13311-022-01190-2.
M. Lech, A. Czy?ewski, and M. T. Kucewicz, “Cybereye: New eye-tracking interfaces for assessment and modulation of cognitive functions beyond the brain,” Sensors, vol. 21, no. 22, Nov. 2021, doi: 10.3390/s21227605.
J. Zou and Q. Zhang, “eyeSay: Brain Visual Dynamics Decoding With Deep Learning & Edge Computing,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2217–2224, 2022, doi: 10.1109/TNSRE.2022.3193714.
A. Bosworth, M. Russell, and R. J. K. Jacob, “Update of fNIRS as an input to brain-computer interfaces: A review of research from the tufts human-computer interaction laboratory,” Photonics, vol. 6, no. 3, 2019, doi: 10.3390/photonics6030090.
R. Hajare and S. Kadam, “Comparative study analysis of practical EEG sensors in medical diagnoses,” Global Transitions Proceedings, vol. 2, no. 2, pp. 467–475, Nov. 2021, doi: 10.1016/j.gltp.2021.08.009.
X. Li et al., “A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG,” Expert Syst Appl, vol. 223, 2023, doi: 10.1016/j.eswa.2023.119736.
D. Rathee, H. Raza, S. Roy, and G. Prasad, “A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface,” Sci Data, vol. 8, no. 1, 2021, doi: 10.1038/s41597-021-00899-7.
D. Dash, A. Wisler, P. Ferrari, E. M. Davenport, J. Maldjian, and J. Wang, “MEG sensor selection for neural speech decoding,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3028831.
Q. Ma et al., “Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform,” eLight, vol. 2, no. 11, Dec. 2022, doi: 10.1186/s43593-022-00019-x.
J. Liu et al., “Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes,” Research, vol. 2022, no. 2, pp. 1–12, Jan. 2022, doi: 10.34133/2022/9830457.
D. Huang, M. Wang, J. Wang, and J. Yan, “A survey of quantum computing hybrid applications with brain-computer interface,” Cognitive Robotics, vol. 2. 2022. doi: 10.1016/j.cogr.2022.07.002.
Z. Juhasz, “Quantitative cost comparison of on-premise and cloud infrastructure based EEG data processing,” Cluster Comput, vol. 24, no. 2, 2021, doi: 10.1007/s10586-020-03141-y.
N. K. Nik Aznan, A. Atapour-Abarghouei, S. Bonner, J. D. Connolly, N. Al Moubayed, and T. P. Breckon, “Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification,” in Proceedings of the International Joint Conference on Neural Networks, 2019. doi: 10.1109/IJCNN.2019.8852227.
M. R. Mercier et al., “Advances in human intracranial electroencephalography research, guidelines and good practices,” Neuroimage, vol. 260, 2022, doi: 10.1016/j.neuroimage.2022.119438.
G. Ouyang, J. Dien, and R. Lorenz, “Handling EEG artifacts and searching individually optimal experimental parameter in real time: A system development and demonstration,” J Neural Eng, vol. 19, no. 1, 2022, doi: 10.1088/1741-2552/ac42b6.
Y. Maruyama, Y. Ogata, L. A. Martínez-Tejada, N. Yoshimura, and Y. Koike, “Independent components of EEG activity correlating with emotional state,” Brain Sci, vol. 10, no. 10, 2020, doi: 10.3390/brainsci10100669.
C. Belkhiria, A. Boudir, C. Hurter, and V. Peysakhovich, “EOG-Based Human–Computer Interface: 2000–2020 Review,” Sensors, vol. 22, no. 13, 2022, doi: 10.3390/s22134914.
G. Lioi et al., “A Multi-Target Motor Imagery Training Using Bimodal EEG-fMRI Neurofeedback: A Pilot Study in Chronic Stroke Patients,” Front Hum Neurosci, vol. 14, 2020, doi: 10.3389/fnhum.2020.00037.
J. Mang, Z. Xu, Y. Bin Qi, and T. Zhang, “Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: challenges and approaches,” Front Neurorobot, vol. 17, 2023, doi: 10.3389/fnbot.2023.1271967.
M. Quintiliani et al., “Role of high-density EEG (hdEEG) in pre-surgical epilepsy evaluation in children: case report and review of the literature,” Child’s Nervous System, vol. 37, no. 5, 2021, doi: 10.1007/s00381-021-05069-z.
S. B. Borgheai, M. Abtahi, K. Mankodiya, J. McLinden, and Y. Shahriari, “Towards a Single Trial fNIRS-based Brain-Computer Interface for Communication,” in International IEEE/EMBS Conference on Neural Engineering, NER, 2019. doi: 10.1109/NER.2019.8717030.
W. C. Francis, C. Umayal, and G. Kanimozhi, “Brain-computer interfacing for wheelchair control by detecting voluntary eye blinks,” Indonesian Journal of Electrical Engineering and Informatics, vol. 9, no. 2, 2021, doi: 10.52549/ijeei.v9i2.2749.
T. Pankovski, “Fast calculation algorithm for discrete resonance-based band-pass filter,” Alexandria Engineering Journal, vol. 55, no. 3, 2016, doi: 10.1016/j.aej.2016.06.017.
M. T. Dejpasand and M. Sasani Ghamsari, “Research Trends in Quantum Computers by Focusing on Qubits as Their Building Blocks,” Quantum Reports, vol. 5, no. 3. 2023. doi: 10.3390/quantum5030039.
C. Cui et al., “Active and Programmable Metasurfaces with Semiconductor Materials and Devices,” Crystals, vol. 13, no. 2. 2023. doi: 10.3390/cryst13020279.
Q. Xiao et al., “Electromagnetic Brain-Computer-Metasurface Holography,” ACS Photonics, vol. 10, no. 7, 2023, doi: 10.1021/acsphotonics.2c01349.
N. Padfield, J. Zabalza, H. Zhao, V. Masero, and J. Ren, “EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges,” Sensors (Switzerland), vol. 19, no. 6, 2019, doi: 10.3390/s19061423.
J. Gallucci, T. Tan, C. Schifani, E. W. Dickie, A. N. Voineskos, and C. Hawco, “Greater individual variability in functional brain activity during working memory performance in Schizophrenia Spectrum Disorders (SSD),” Schizophr Res, vol. 248, 2022, doi: 10.1016/j.schres.2022.07.012.
O. Ali, M. Saif-ur-Rehman, S. Dyck, T. Glasmachers, I. Iossifidis, and C. Klaes, “Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method,” Sci Rep, vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-07992-w.
H. Zhu, D. Forenzo, and B. He, “On The Deep Learning Models for EEG-based Brain-Computer Interface Using Motor Imagery,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, doi: 10.1109/TNSRE.2022.3198041.
E. Mandelbaum, “Everything and More: The Prospects of Whole Brain Emulation,” J Philos, vol. 119, no. 8, pp. 444–459, 2022, [Online]. Available: http://www.humanconnectomeproject.org/
G. Osi?ski, “Theological and ethical aspects of mind transfer in transhumanism,” Scientia et Fides, vol. 9, no. 1, 2021, doi: 10.12775/SETF.2021.005.
M. D. Wheelock, J. P. Culver, and A. T. Eggebrecht, “High-density diffuse optical tomography for imaging human brain function,” Review of Scientific Instruments, vol. 90, no. 5, 2019, doi: 10.1063/1.5086809.
K. Zhang et al., “Application of transfer learning in eeg decoding based on brain-computer interfaces: A review,” Sensors (Switzerland), vol. 20, no. 21. 2020. doi: 10.3390/s20216321.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.