Prediction Modeling of Capacity Factor of Rembang Coal-Fired Steam Power Plant Based on Machine Learning to Improve the Accuracy of Primary Energy Planning

(1) * Ery Perdana Mail (Master of Energy, School of Postgraduate, Diponegoro University, Indonesia)
(2) Sulardjaka Sulardjaka Mail (Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Indonesia)
(3) Budi Warsito Mail (Department of Statistics, Faculty of Science and Mathematics, Diponegoro University, Indonesia)
*corresponding author

Abstract


The Rembang Coal-Fired Power Plant (PLTU Rembang), with a capacity of 2 x 315 MW, is a key power plant in Central Java, where fuel expenses represent the largest cost component. Accurate fuel procurement planning, which relies on projecting electricity sales, is essential to reduce these costs. This study develops and compares four machine learning-based Capacity Factor (CF) prediction models: random forest regression, support vector regression, multiple polynomial regression, and multiple linear regression. The independent variables are selected from internal and external sources using F-tests and t-tests. Among the four models, the multiple linear regression model demonstrated the smallest Mean Absolute Percentage Error (MAPE) of 7.83%. Using this model, the annual CF for PLTU Rembang in 2024-2026 is predicted to be between 82% and 84%, while the CF for February-June 2024 is expected to range from 87% to 91%. With a monthly CF prediction accuracy classified as very good (MAPE of 2.35%), these predictions are valuable for optimizing monthly fuel purchase allocations, considering initial fuel stock and target inventory age (17-30 Days of Plant Operation).

Keywords


Capacity Factor; Regression; Machine Learning; Multiple Linear Regression; MAPE;

   

DOI

https://doi.org/10.29099/ijair.v9i1.1394
      

Article metrics

10.29099/ijair.v9i1.1394 Abstract views : 691 | PDF views : 152

   

Cite

   

Full Text

Download

References


L. Rochman, “Feasibility Study PLTU - 1 Jawa Tengah 2 x (300-400) MW Rembang,” 2007, PT Arkonin Engineering MP, Jakarta.

PT PLN (Persero), “Financial Highlight AMC Jawa 2011-2021,” 2022, Jakarta.

E. Grubert, “Same-plant trends in capacity factor and heat rate for US power plants, 2001–2018,” IOP SciNotes, vol. 1, no. 2, p. 024007, 2020, doi: 10.1088/2633-1357/abb9f1.

D. E. Babatunde, A. N. Anozie, J. A. Omoleye, O. Oyebode, O. M. Babatunde, and A. O. Ayeni, “Modelling the power output from a steam power plant in Nigeria,” Energy Reports, vol. 6, pp. 822–828, 2020, doi: 10.1016/j.egyr.2020.11.126.

H. Gufron, D. Rusirawan, and L. Widyawati, “Forecasting Produksi Energi PLTS 1 kWp Menggunakan Mesin Pembelajaran Dengan Algoritma Support Vector Machine,” J. Tekno Insentif, vol. 16, no. 2, pp. 79–91, 2022, doi: 10.36787/jti.v16i2.843.

H. Rashid, W. Haider, and C. Batunlu, “Forecasting of Wind Turbine Output Power Using Machine learning,” Proc. - Int. Conf. Adv. Comput. Inf. Technol. ACIT, pp. 396–399, 2020, doi: 10.1109/ACIT49673.2020.9208852.

P. Tüfekci, “Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods,” Int. J. Electr. Power Energy Syst., vol. 60, pp. 126–140, 2014, doi: 10.1016/j.ijepes.2014.02.027.

P. A. Purwanto, T. Ivantoro, and M. K. Jayadi, “Predictive Analytics of Electrical Power Output of Coal-Fired Power Plant Using Machine Learning,” ICT-PEP 2021 - Int. Conf. Technol. Policy Energy Electr. Power Emerg. Energy Sustain. Smart Grid, Microgrid Technol. Futur. Power Syst. Proc., pp. 224–229, 2021, doi: 10.1109/ICT-PEP53949.2021.9601136.

M. F. Sanner, “Python: a programming language for software integration and development,” J Mol Graph Model, vol. 17, no. 1, pp. 57–61, 1999.

G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, “An Introduction Statistical Machine Learning With Applications in Python,” Springer Texts Stat., pp. 425–472, 2023, [Online]. Available: https://www.statlearning.com/

D. Polzer, “7 of the Most Used Regression Algorithm : How to Choose the Right Ones.” Accessed: Oct. 24, 2022. [Online]. Available: https://towardsdatascience.com/7-of-the-most-commonly-used-regression-algorithms-and-how-to-choose-the-right-one-fc3c8890f9e3

B. Putro, M. Tanzil Furqon, and S. H. Wijoyo, “Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Exponential Smoothing (Studi Kasus : PDAM Kota Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4679–4686, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

S. Weisberg, Applied Linear Regression Fourth Edition. New Jersey: John Wiley & Sons, Inc., 2014.

M. H. Kutner, C. J. Natchtsheim, J. Neter, and Wi. Li, Applied Linear Statistical Models 4th Edition. New York: Mc Graw-Hill, 2004. doi: 10.1080/00224065.1997.11979760.

S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” 2018, [Online]. Available: http://arxiv.org/abs/1811.12808

Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12343 LNCS, pp. 503–515, 2020, doi: 10.1007/978-3-030-62008-0_35.

L. Bi, O. Tsimhoni, and Y. Liu, “Using the support vector regression approach to model human performance,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, vol. 41, no. 3, pp. 410–417, 2011, doi: 10.1109/TSMCA.2010.2078501.

C. H. Wu, J. M. Ho, and D. T. Lee, “Travel-time prediction with support vector regression,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 276–281, 2004, doi: 10.1109/TITS.2004.837813.

Y. G. Akhlaghi, X. Ma, X. Zhao, S. Shittu, and J. Li, “A statistical model for dew point air cooler based on the multiple polynomial regression approach,” Energy, vol. 181, pp. 868–881, 2019.

K. A. Marill, “Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression,” Acad. Emerg. Med., vol. 11, no. 1, pp. 94–102, 2004, doi: 10.1197/j.aem.2003.09.006.

P. C. Chang, Y. W. Wang, and C. H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, pp. 86–96, 2007, doi: 10.1016/j.eswa.2005.11.021.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.