
(2) * As'syahrin Nanda

(3) Yulita Salim

*corresponding author
AbstractTraditional image classification research has focused on single-input and multiclass approaches. However, these approaches often fail to capture the complexity and diversity of real-world image data. To address the complexity and more diverse variation in data, as well as to improve the classification accuracy of various categories, a multi-input image approach is utilized. With a multi-input multi-class approach, a Transfer Learning model based on VGG16 is trained to identify objects from various perspectives and classify them into one of many predefined classes. The VGG16 architecture in the multi-input and multi-class classification of Toraja Buffalo breeds demonstrates excellent results with an average accuracy of 93.33%. The "Kerbau Lotong Boko" and "Kerbau Bonga Ulu" classes achieved 100% accuracy, while other classes showed high precision, recall, and F1 scores. Despite fluctuations in accuracy and loss during training, the model successfully achieved good convergence and generalization. This research is significant in the field of image classification by introducing a multi-input method capable of capturing richer and more diverse information from complex objects such as Toraja buffalo. It demonstrates that CNN architectures like VGG16 can be adapted to handle more complex classification tasks using a multi-input approach.
KeywordsMultiple Input Classification, Toraja Buffalo, Transfer Learning VGG16
|
DOIhttps://doi.org/10.29099/ijair.v8i1.1.1203 |
Article metrics10.29099/ijair.v8i1.1.1203 Abstract views : 125 |
Cite |
References
S. Redjeki, “Perbandingan Algoritma Backpropagation dan K-Nearest Neighbor untuk Identifikasi Penyakit,” Seminar, pp. 1–5, 2013.
U. P. Sanjaya, Z. Alawi, A. R. Zayn, and G. P. Dirgantoro, “Optimasi Convolutional Neural Network dengan Standard Deviasi untuk Klasifikasi Pneumonia pada Citra X-rays Paru,” Gener. J., vol. 7, no. 3, pp. 40–47, 2023, doi: 10.29407/gj.v7i3.20183.
N. B. Aji and H. Tjandrasa, “Klasifikasi Eeg Epilepsi Menggunakan Singular Spectrum Analysis, Power Spectral Density Dan Convolution Neural Network,” JUTI J. Ilm. Teknol. Inf., vol. 15, no. 2, p. 185, 2017, doi: 10.12962/j24068535.v15i2.a662.
D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 1, pp. 54–63, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
E. Fitur, V. Jones, U. Presensi, B. Nugroho, W. S. J. Saputra, and E. Y. Puspaningrum, “Pengenalan Multi-Wajah Menggunakan Metode Ekstraksi Fitur Viola Jones Untuk Presensi Perkuliahan,” no. September, pp. 6–11, 2019.
A. Riyandi, T. Widodo, and S. Uyun, “Classification of Damaged Road Images Using the Convolutional Neural Network Method,” Telematika, vol. 19, no. 2, p. 147, 2022, doi: 10.31315/telematika.v19i2.6460.
W. Nengsih, J. N. S. Juni Nurma Sari, C. Angresta, and H. F. Dwinas, “DeepSun: Klasifikasi Fase Cahaya Matahari Berdasarkan Warna Menggunakan CNN,” J. Komput. Terap., vol. 9, no. 2, pp. 182–190, 2023, doi: 10.35143/jkt.v9i2.6182.
D. Prasetyawan and R. Gatra, “Model Convolutional Neural Network untuk Mengukur Kepuasan Pelanggan Berdasarkan Ekspresi Wajah,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, pp. 661–673, 2022, doi: 10.28932/jutisi.v8i3.5493.
N. Awalia and A. Primajaya, “Identifikasi Penyakit Leaf Mold Daun Tomat Menggunakan Model DenseNet-121,” J. Ilm. Ilmu Komput., vol. 8, no. 1, pp. 49–54, 2022, [Online]. Available: http://ejournal.fikom-unasman.ac.id
Y. N. Yenusi, Suryasatriya Trihandaru, and A. Setiawan, “Comparison of Convolutional Neural Network (CNN) Models in Face Classification of Papuan and Other Ethnicities,” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 261–268, 2023, doi: 10.23887/jstundiksha.v12i1.46861.
S. Astiti, W. Novrian, and Y. P. Putra, “Penerapan Deep Learning pada Pengolahan Data Citra dan Klasifikasi Udang Vaname Menggunakan Algoritma Convolutional Neural Network,” vol. 6, no. 1, pp. 490–498, 2024, doi: 10.47065/bits.v6i1.5418.
R. Rikendry and A. Maharil, “Perbandingan Arsitektur Vgg16 Dan Resnet50 Untuk Rekognisi Tulisan Tangan Aksara Lampung,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 236–243, 2022, doi: 10.33365/jatika.v3i2.2030.
E. Sutanty and D. Kusuma Astuti, “DECODE: Jurnal Pendidikan Teknologi Informasi PENERAPAN MODEL ARSITEKTUR VGG16 UNTUK KLASIFIKASI JENIS SAMPAH,” vol. 3, no. 2, pp. 407–419, 2023.
D. Ramayanti, Sri Dianing Asri, and Lionie Lionie, “Implementasi Model Arsitektur VGG16 dan MobileNetV2 Untuk Klasifikasi Citra Kupu-Kupu,” JSAI (Journal Sci. Appl. Informatics), vol. 5, no. 3, pp. 182–187, 2022, doi: 10.36085/jsai.v5i3.2864.
K. Umam, F. Maisa, and H. Aulida, “Klasifikasi Jenis Golongan Kendaraan Di Gerbang Tol Menggunakan Arsitektur Cnn Vgg 16,” vol. 5, no. 1, pp. 10–15, 2024.
P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.
R. FATURRAHMAN, Y. S. HARIYANI, and S. HADIYOSO, “Klasifikasi Jajanan Tradisional Indonesia berbasis Deep Learning dan Metode Transfer Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 4, p. 945, 2023, doi: 10.26760/elkomika.v11i4.945.
H. Pranatawijaya and R. Priskila, “IMPLEMENTASI ALGORITMA YOLO VERSI 8 UNTUK MEMBACA BAHASA ISYARAT,” vol. 8, no. 4, pp. 195–205, 2024.
L. Farsiah, A. Misbullah, and H. Husaini, “Analisis Sentimen Menggunakan Arsitektur Long Short-Term Memory (Lstm) Terhadap Fenomena Citayam Fashion Week,” Cybersp. J. Pendidik. Teknol. Inf., vol. 6, no. 2, p. 86, 2022, doi: 10.22373/cj.v6i2.14687.
R. Rosalina and A. Wijaya, “Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 452–461, 2020, doi: 10.28932/jutisi.v6i3.2857.
R. S. D. Pristiwanti, Desi, Bai Badariah, Sholeh Hidayat, “Implementasi dan Normalisasi Metode Pembelajaran Blended Learning di Era Digital,” J. Pendidik. dan Konseling, vol. 4, no. 1980, pp. 1349–1358, 2022.
G. Thiodorus, A. Prasetia, L. Afrizal, and N. Yudistira, “Klasifikasi citra makanan / nonmakanan menggunakan metode Transfer Learning dengan model Residual Network Classification of food / non-food images using Transfer Learning method with Residual Network model,” J. Ilm. Sist. Inf., vol. 11, no. 2, pp. 74–83, 2021, [Online]. Available: www.journal.unipdu.ac.id/index.php/teknologi
Muh. Falach Achsan Yusuf, “Klasifikasi Gambar Burung Konservasi di Wilayah Papua Barat Menggunakan Transfer Learning,” Indones. J. Comput. Sci., vol. 13, no. 1, 2024, doi: 10.33022/ijcs.v13i1.3702.
I. A. DLY, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
S. Samidin and A. Fadjeri, “Klasifikasi Gambar Batu-Kertas-Gunting Menggunakan Convolutional Neural Network dengan Fungsi Callback untuk Mencegah Overfitting,” J. Penelit. Inov., vol. 4, no. 2, pp. 785–794, 2024, doi: 10.54082/jupin.413.
A. Fahri and Y. Ramdhani, “Visualisasi Data dan Penerapan Machine Learning Menggunakan Decision Tree Untuk Keputusan Layanan Kesehatan COVID-19,” J. Tekno Kompak, vol. 17, no. 2, pp. 50–60, 2022, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/2438%0Ahttps://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/download/2438/1257
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
M. A. S. Arifin, A. Anto, T. Susilo, A. T. Martadinata, and B. Santoso, “Deteksi Aktifitas Malware pada Internet of Things menggunakan Algoritma Decision Tree dan Random Forest,” vol. 4, no. 6, pp. 3073–3079, 2024, doi: 10.30865/klik.v4i6.1903.
J. I. Komputasi, V. No, M. Ssd, V. Mobilenet, and S. Model, “Pembuatan Aplikasi Deteksi Objek Menggunakan TensorFlow Object Detection API dengan Memanfaatkan SSD MobileNet V2 Sebagai Model Pra - Terlatih,” J. Ilm. Komputasi, vol. 19, no. 3, pp. 421–430, 2020, doi: 10.32409/jikstik.19.3.68.
S. N. Saputro, F. D. Adhinata, and U. Athiyah, “Classification Taxonomies Genus of 90 Animals Using Transfer Learning Resnet-152,” CommIT J., vol. 18, no. 1, pp. 1–15, 2024, doi: 10.21512/commit.v18i1.9482.
A. E. Wijaya, W. Swastika, and O. H. Kelana, “Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray,” Sainsbertek J. Ilm. Sains Teknol., vol. 2, no. 1, pp. 10–15, 2021, doi: 10.33479/sb.v2i1.125.
A. Aristoteles, A. Syarif, and F. R. Lumbanraja, “Systematic Review: Perkembangan Machine Learning Pada Sperma Manusia,” J. Teknoinfo, vol. 17, no. 1, p. 112, 2023, doi: 10.33365/jti.v17i1.2078.
A. R. Manga, M. A. F. Latief, A. W. M. Gaffar, H. Azis, R. Satra, and Y. Salim, “Hyperparameter Tuning of Identity Block Uses an Imbalance Dataset with Hyperband Method,” in 2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM), 2024, pp. 1–7. doi: 10.1109/IMCOM60618.2024.10418427.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.